Integrable viscous conservation laws

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On integrable conservation laws.

We study normal forms of scalar integrable dispersive (not necessarily Hamiltonian) conservation laws, via the Dubrovin-Zhang perturbative scheme. Our computations support the conjecture that such normal forms are parametrized by infinitely many arbitrary functions that can be identified with the coefficients of the quasi-linear part of the equation. Moreover, in general, we conjecture that two...

متن کامل

Viscous Conservation Laws, Part I: Scalar Laws

Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...

متن کامل

Viscous System of Conservation Laws: Singular Limits

Abstract. We continue our analysis of the Cauchy problem for viscous system of conservation, under natural assumptions. We examine in which way does the existence time depend upon the viscous tensor B(u). In particular, we consider singular limits, where the rank of the symbol B(u; ξ) drops at the limit. This covers a lot of situations, for instance that of the limit of the Navier-Stokes-Fourie...

متن کامل

Scalar Non-linear Conservation Laws with Integrable Boundary Data

We consider the initial-boundary value problem for a scalar non-linear conservation law u t + f(u)] x = 0; u(0; x) = u(x); u(; 0) = ~ u(t); () on the domain = f(t; x) 2 R 2 : t 0; x 0g. Here u = u(t; x) is the state variable, u; ~ u are integrable (possibly unbounded) initial and boundary data, and f is assumed to be strictly convex and superlinear. We rst derive an explicit formula for a solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2015

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/28/6/1859